33 research outputs found

    Automatic supervision of temperature, humidity, and luminance with an Assistant Personal Robot

    Get PDF
    Smart environments and Ambient Intelligence (AmI) technologies are defining the future society where energy optimization and intelligent management are essential for a sustainable advance. Mobile robotics is also making an important contribution to this advance with the integration of sensors and intelligent processing algorithms. This paper presents the application of an Assistant Personal Robot (APR) as an autonomous agent for temperature, humidity, and luminance supervision in human-frequented areas. The robot multiagent capabilities allow gathering sensor information while exploring or performing specific tasks and then verifying human comfortability levels. The proposed methodology creates information maps with the distribution of temperature, humidity, and luminance and interprets such information in terms of comfort and warns about corrective actuations if required

    Experimental characterization of the twin-eye laser mouse sensor

    Get PDF
    This paper proposes the experimental characterization of a laser mouse sensor used in some optical mouse devices. The sensor characterized is called twin-eye laser mouse sensor and uses the Doppler effect to measure displacement as an alternative to optical flow-based mouse sensors. The experimental characterization showed similar measurement performances to optical flow sensors except in the sensitivity to height changes and when measuring nonlinear displacements, where the twin-eye sensor offered better performance. The measurement principle of this optical sensor can be applied to the development of alternative inexpensive applications that require planar displacement measurement and poor sensitivity to -axis changes such as mobile robotics.The authors acknowledge the support of the Government of Catalonia (Comissionat per a Universitats i Recerca, Departament d’Innovació, Universitats i Empresa) and the European Social Fund

    Measurement of vibrations in two tower-typed assistant personal robot implementations with and without a passive suspension system

    Get PDF
    This paper presents the vibration pattern measurement of two tower-typed holonomic mobile robot prototypes: one based on a rigid mechanical structure, and the other including a passive suspension system. Specific to the tower-typed mobile robots is that the vibrations that originate in the lower part of the structure are transmitted and amplified to the higher areas of the tower, causing an unpleasant visual effect and mechanical stress. This paper assesses the use of a suspension system aimed at minimizing the generation and propagation of vibrations in the upper part of the tower-typed holonomic robots. The two robots analyzed were equipped with onboard accelerometers to register the acceleration over the X, Y, and Z axes in different locations and at different velocities. In all the experiments, the amplitude of the vibrations showed a typical Gaussian pattern which has been modeled with the value of the standard deviation. The results have shown that the measured vibrations in the head of the mobile robots, including a passive suspension system, were reduced by a factor of 16.This work was partially funded by Indra, the University of Lleida, the RecerCaixa 2013 grant, the Government of Catalonia (Comissionat per a Universitats i Recerca, Departament d’Innovació, Universitats i Empresa), and by the European Social Fund (ECO/1794/2015)

    Measuring gas concentration and wind intensity in a turbulent wind tunnel with a mobile robot

    Get PDF
    This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms

    Antifungal prophylaxis with nebulized amphotericin-B in solid-organ transplant recipients with severe COVID-19: a retrospective observational study

    Get PDF
    Aspergillosis; COVID-19; ProphylaxisAspergilosis; COVID-19; ProfilaxisAspergilosi; COVID 19; ProfilaxiCOVID-19-associated pulmonary aspergillosis (CAPA) has emerged as a frequent complication in the intensive care unit (ICU). However, little is known about this life-threatening fungal superinfection in solid organ transplant recipients (SOTRs), including whether targeted anti-mold prophylaxis might be justified in this immunosuppressed population. We performed a multicentric observational retrospective study of all consecutive ICU-admitted COVID-19 SOTRs between August 1, 2020 and December 31, 2021. SOTRs receiving antifungal prophylaxis with nebulized amphotericin-B were compared with those without prophylaxis. CAPA was defined according the ECMM/ISHAM criteria. Sixty-four SOTRs were admitted to ICU for COVID-19 during the study period. One patient received antifungal prophylaxis with isavuconazole and was excluded from the analysis. Of the remaining 63 SOTRs, nineteen (30.2%) received anti-mold prophylaxis with nebulized amphotericin-B. Ten SOTRs who did not receive prophylaxis developed pulmonary mold infections (nine CAPA and one mucormycosis) compared with one who received nebulized amphotericin-B (22.7% vs 5.3%; risk ratio 0.23; 95%CI 0.032-1.68), but with no differences in survival. No severe adverse events related to nebulized amphotericin-B were recorded. SOTRs admitted to ICU with COVID-19 are at high risk for CAPA. However, nebulized amphotericin-B is safe and might reduce the incidence of CAPA in this high-risk population. A randomized clinical trial to confirm these findings is warranted.AR received a predoctoral research grant from the Instituto de Salud Carlos III, Spanish Ministry of Science, Innovation and Universities, (PFIS grant FI18/00183). This work was supported by the Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain. We thank CERCA Programme/Generalitat de Catalunya for institutional support

    A mobile robot agent for gas leak source detection

    Get PDF
    Trends in Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection.This paper presents an autonomous agent for gas leak source detec-tion. The main objective of the robot is to estimate the localization of the gas leak source in an indoor environment without any human intervention. The agent implements an SLAM procedure to scan and map the indoor area. The mobile robot samples gas concentrations with a gas and a wind sensor in order to estimate the source of the gas leak. The mobile robot agent will use the in-formation obtained from the onboard sensors in order to define an efficient scanning path. This paper describes the measurement results obtained in a long corridor with a gas leak source placed close to a wall.This work was partially funded by the Spanish Ministery of Economy and Competitivity, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica: TEC2011-26143, and by the Government of Catalonia (Comisionat per a Universitats i Recerca, Departament d’Innovació, Universitats i Empresa) and the European Social Fund

    A proposal for automatic fruit harvesting by combining a low cost stereovision camera and a robotic arm

    Get PDF
    This paper proposes the development of an automatic fruit harvesting system by combining a low cost stereovision camera and a robotic arm placed in the gripper tool. The stereovision camera is used to estimate the size, distance and position of the fruits whereas the robotic arm is used to mechanically pickup the fruits. The low cost stereovision system has been tested in laboratory conditions with a reference small object, an apple and a pear at 10 different intermediate distances from the camera. The average distance error was from 4% to 5%, and the average diameter error was up to 30% in the case of a small object and in a range from 2% to 6% in the case of a pear and an apple. The stereovision system has been attached to the gripper tool in order to obtain relative distance, orientation and size of the fruit. The harvesting stage requires the initial fruit location, the computation of the inverse kinematics of the robotic arm in order to place the gripper tool in front of the fruit, and a final pickup approach by iteratively adjusting the vertical and horizontal position of the gripper tool in a closed visual loop. The complete system has been tested in controlled laboratory conditions with uniform illumination applied to the fruits. As a future work, this system will be tested and improved in conventional outdoor farming conditions
    corecore